Artificial intelligence Lab
(Русский) Команда Лаборатории искусственного интеллекта занимается разработкой алгоритмов, применимых для анализа медицинских изображений (рентген, КТ, МРТ) с целью автоматизации процесса выявления признаков патологий внутренних органов на ранних стадиях заболевания.
Сейчас команда лаборатории активно изучает возможности применения нейронной сети в диагностике заболеваний легких (рентгенография) через призму научного подхода.
Работы ведутся при поддержке Российского научного фонда.
Team
Ramil
Kuleev
Head of the AI Lab
Head of the AI Lab
Publications
Journal
2019
(Русский) Deep neural network ensemble for pneumonia localization from a large-scale chest x-ray database
Authors: | I. Sirazitdinov, M. Kholiavchenko, T. Mustafaev, Y. Yixuan, R. Kuleev, and B. Ibragimov |
Publisher: | Computers & Electrical Engineering |
Source: | Computers & Electrical Engineering |
Journal
2020
(Русский) Automated Localization of Lung Nodules from Chest X-rays With Deep Neural Networks
Authors: | B. Maksudov, S. Kiselev, M. Kholiavchenko, T. Mustafaev, R. Kuleev, and B. Ibragimov |
Publisher: | International Journal of Radiation Oncology*Biology*Physics |
Source: | International Journal of Radiation Oncology*Biology*Physics |
Journal
2020
(Русский) Adopting Confident Learning to Eliminate Uncertainty in Chest X-ray Images for Lung Nodules Prediction
Authors: | M. Kholiavchenko, B. Maksudov, I. Sirazitdinov, T. Mustafaev, R. Kuleev, and B. Ibragimov |
Publisher: | International Journal of Radiation Oncology*Biology*Physics |
Source: | International Journal of Radiation Oncology*Biology*Physics |
Conference
2020
(Русский) Extracting clinical information from chest x-ray reports: A case study for Russian language
Authors: | E. Kivotova, B. Maksudov, R. Kuleev, and B. Ibragimov |
Publisher: | 2020 International Conference Nonlinearity, Information and Robotics (NIR) |
Source: | 2020 International Conference Nonlinearity, Information and Robotics (NIR) |
Journal
2021
(Русский) Deep Learning for Diagnosis and Segmentation of Pneumothorax: The Results on the Kaggle Competition and Validation Against Radiologists
Authors: | A. Tolkachev, I. Sirazitdinov, M. Kholiavchenko, T. Mustafaev, and B. Ibragimov |
Publisher: | IEEE Journal of Biomedical and Health Informatics |
Source: | IEEE Journal of Biomedical and Health Informatics |
Journal
2022
(Русский) Multi-landmark environment analysis with reinforcement learning for pelvic abnormality detection and quantification
Authors: | I. E. I. Bekkouch, B. Maksudov, S. Kiselev, T. Mustafaev, T. Vrtovec, and B. Ibragimov |
Publisher: | Medical Image Analysis |
Source: | Medical Image Analysis |
Conference
2021
(Русский) Automating cardiothoracic ratio measurements in chest X-rays
Authors: | S. Kiselev, B. Maksudov, T. Mustafaev, R. Kuleev, and B. Ibragimov |
Publisher: | 2021 International Conference “Nonlinearity, Information and Robotics” |
Source: | 2021 International Conference “Nonlinearity, Information and Robotics” |
Journal
2022
(Русский) Gaze-based attention to improve the classification of lung diseases
Authors: | M. Kholiavchenko, I. Pershin, B. Maksudov, T. Mustafaev, Y. Yuan, and B. Ibragimov |
Publisher: | Medical Imaging 2022: Image Processing |
Source: | Medical Imaging 2022: Image Processing |
Journal
2022
(Русский) AI-based analysis of radiologist’s eye movements for fatigue estimation: a pilot study on chest X-rays
Authors: | Pershin, M. Kholiavchenko, B. Maksudov, T. Mustafaev, and B. Ibragimov |
Publisher: | Medical Imaging 2022: Image Perception, Observer Performance, and Technology Assessment |
Source: | Medical Imaging 2022: Image Perception, Observer Performance, and Technology Assessment |
Journal
2022
(Русский) Artificial Intelligence for the Analysis of Workload-Related Changes in Radiologists’ Gaze Patterns
Authors: | Pershin, M. Kholiavchenko, B. Maksudov, T. Mustafaev, D. Ibragimova, and B. Ibragimov |
Publisher: | IEEE Journal of Biomedical and Health Informatics |
Source: | IEEE Journal of Biomedical and Health Informatics |
Projects
Contact us
+7 (843) 203 92 53