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Abstract—This paper proposed a mixed-integer convex
optimization-based method for merging multiple tensegrity struc-
tures. Merging is extremely useful in constructing complex
structures, which consist of lots of cables and struts, whereas
building such structures from scratch might be infeasible. In
addition to that, merging procedure let’s us use human-designed
structures as elementary units of resulting object. The proposed
method permits utilization of lots of constraints, used during
tensegrity generation procedure. At the same time we also try to
merge structures with as little additional connections as possible.
In comparison to existing approaches, this method is a single-
step algorithm and does not make any assumption on shape and
relative position of merged structures.

I. INTRODUCTION

The term tensegrity refers to a prestressed structure, consist-
ing of a discontinuous set of compressive components (struts)
connected via a connected set of tensile components (cables)
[1]. Most of classical tensegrity structures are prestress-stable
[2], [3]. The stability is defined by the positive definiteness of
the tangent stiffness matrix; prestress stability indicates that
the structure is stable in the current configuration, given correct
prestress (action of internal elastic forces) [4].

Let us consider the problem of generating tensegrity struc-
ture in a stable configuration, when the topology, structural
parameters and configuration can be modified, subject to
constraints. It can be referred to as tensegrity generation
problem. A substantial amount of work has been done in this
area. Major directions include tensegrity generation based on
machine learning and evolutionary algorithms (such as Viabil-
ity Evolution and Neuro-Evolution of Augmenting Topologies
in [5]) and nonlinear optimization. The later includes mixed-
integer convex optimization (MICP)-based methods, which
have presented a number of promising results [6], which we
will discuss in detail later. Here we want to point out that the
resulting optimization problems are tractable, but large and
resulting structures are not always optimal: they require fine
tuning, and importantly the problems do not take into account
local stiffness properties of the robot.

In practice it might be desirable to use smaller hand-
designed tensegrity structures as building blocks in creating
larger ones. However, existing methods do not provide an
automated robust method for merging pre-generated structures:
combining separate structures into a more complex single
tensegrity with possible addition of new structural elements
supporting the merge. Introduction of such algorithms would
not only let us construct more complex structures, but also give
an opportunity to add human expertise into generation proce-
dure, by combining human designed and computer designed
structures together.

In this paper we propose a new optimization-based au-
tomated method for merging arbitrary number of tensegrity
structures together. The whole algorithm is formulated as a
one-step mixed-integer convex program.

This paper is organized in following way. In section II we
give a definition of tensegrity structure’s dynamical model.
In section III we first describe general convex-optimization
based approach for generation, then we introduce our method
for merging tensegrity structures. Section IV is dedicated to
a numerical experiments, where we show the ability of our
method to merge structures and provide relevant analysis.

A. State of the art

The problem of design of tensegrity structures has been
extensively studied previously. Originally, such structure were
designed by human experts in architecture and civil engineer-
ing. We should note that the generation problem includes
at least two different sets of problems (divided so based
on the difference in approaches to solving them, rather than
on any inherent distinction): 1) topology design, where the
goal is to find the number of nodes as well as number,
placement and type of elastic elements connecting nodes; 2)
stable configuration and pre-stress design, where the position
of the nodes and pre-stress of elastic elements (or more
often, a subset of them) are acting as decision variables, and
the goal is to find a statically stable configuration of the
tensegrity structure. A multitude of automated approaches for
solving these and related problems has been proposed: genetic
algorithms [7]–[9], machine learning [10], stochastic methods
[11], non-linear optimization and iterative convex optimization978-1-6654-2407-3/21/$31.00 ©2021 IEEE



[12]; for some special cases, algebraic conditions and even
analytical solutions have been found [13], [14].

One of the first methods for topology design, based on
convex optimization was proposed in [6]. There, a mixed-
integer programming-based two step approach was proposed,
taking into account equilibrium condition and a discontinuity
constraints. Later the method was improved by turning it
into a single step procedure [15]. Implicit symmetry control
during design process was also investigated [15]. Further,
generalizations of these methods were studied for generating
arbitrary class structures (where class of tensegrity structure
is the maximum amount of struts connected to any joint) [16]
and for additions of rigid bodies [17].

In our work we are focusing on formulating the mixed
integer programming-based approach for merging arbitrary
tensegrity structures into a single one. The only research we
are aware of, where work in this direction has been reported
is [6], where only structures with same position relationship
one-by-one are connected in a two-step process . Our method
for merging tensegrity structures is distinct in: 1) the whole
procedure is done in a single step 2) being easily extendable
to an arbitrary number of tensegrity structures, which can
have any arbitrary shape and be freely located and merged
via auxiliary elements (both struts and elastic elements) 3)
allowing all constraints required in generation task, including
explicit assignment of the desired class of the structure.
In the following sections we present general mathematical
description of the tensegrity models and outline our method.
At the end of the paper we provide numerical experiments
demonstrating work of the method.

II. MODEL OF A TENSEGRITY STRUCTURE IN STATIC
EQUILIBRIUM

Tensegrity structure may be approximately modelled as a
set of point masses ri representing coordinates of the nodes
(connection points of struts and cables). We can write force
balance equations for the structure which should to hold for
each node in order for the structure to be stable:

n∑
j=1

fi,j(r) = 0, ∀i, j ∈ {1, 2, ..., n} (1)

where fi,j - elastic force acting between nodes i and j, n -
total number of nodes in the structure. Elastic forces fi,j can
be modelled as follows:

fi,j = µi,j(||ri − rj || − ρi,j)
ri − rj
||ri − rj ||

. (2)

where ri, rj are positions of the nodes, µi,j is the linear
stiffness coefficient of the elastic element connecting the
nodes, and ρi,j is its rest length.

A. General tensegrity generation framework

Generation procedure consists of combining several convex
and mixed-integer constraints and an objective function.

First, we should rewrite static equilibrium constraints (1),
(2). For that we introduce force-density variables and direc-
tional matrices to handle static equilibrium constraints.

Let Pi =
[
pi
1, pi

2, ... pi
n

]
be the matrix, indicating

directions from the i-th node in the tensegrity structure to all
other points:

Pi =
[
(r1 − ri) (r2 − ri) ... (rn − ri)

]
(3)

Then, the static equilibrium for the i-th node can be de-
scribed as:

Pifi = 0 (4)

where fi ∈ Rn can be seen as forces parametrized with scalar
values along pre-defined directions, or as Lagrange multipliers,
or as a free variables. In the presence of external forces gi,
the condition becomes:

Pifi = gi (5)

Other constraints are written by means of two symmetric
connectivity matrices R,C ∈ Rn×n, where R describes strut
connections, and C describes cable connections. If two nodes
i, j are connected with a strut, then Rij = 1, otherwise Rij =
0. Same goes for cable connections in the matrix C.

We should add constraints on class of tensegrity (6), unidi-
rectionality of cable and strut forces (7) and on symmetry of
matrices R,C (8):

n∑
j=1

Rij = 1, ∀i ∈ {1, 2, ..., n} (6)

where Rij is the i, j-th element of the matrix R.

fij ≤MCij , ∀i, j ∈ {1, 2, ..., n}
−fij ≤MRij , ∀i, j ∈ {1, 2, ..., n}

(7)

where M ∈ R is the maximum admissible force component-
wise magnitude.

C = C>, R = R>

Cii = Rii = 0, ∀i ∈ {1, 2, ...n}
(8)

There are also many other possible constraints, such as
constraint on strut and cable length limits, which can be either
limit absolute length of the strut or cable, or its projection on
some axis; these and others gives more control over resulting
structure and its properties. We leave them out here for
simplicity, as our main focus is on merging different structures.

B. Merging tensegrity structures as a mixed-integer program

Assume that each tensegrity is defined by connectivity
matrices Ri, Ci, and the merged structure will be defined by
its connectivity matrices R, C. In case we want to add new
cable or strut connections it is necessary to edit connectivity
matrices.

Consider the case when two tensegrity structures need to be
merged; we will refer to them as parent structures. First let



Fig. 1: Tensegrity structures, generated using points sampled
from spherical and cylindrical grids, before merging

Fig. 2: Tensegrity structures, generated using points sampled
from spherical and cylindrical grids, after merging

us consider procedure where we do not add any new nodes,
but only add new connections. Thus, set of nodes of resulting
tensegrity is a union of sets of nodes of merged structures.

For concreteness we can define dimensions of the con-
nectivity matrices C1 ∈ Rn×n,C2 ∈ Rm×m and strut
R1 ∈ Rn×n,R2 ∈ Rm×m. We combine them diagonally
into new cable C̄ ∈ Rm+n×m+n and strut R̄ ∈ Rm+n×m+n

matrices,

C̄ =

[
C1 0
0 C2

]
R̄ =

[
R1 0
0 R2

] (9)

Note that the node arrays of the parent structures are to
be merged as well; hence, number of constraints (4) and (5)
should increase accordingly.

Thus constructed matrices C̄ and R̄ contain only informa-
tion about internal connections on the parent structures. In
order to get inter-parent connections we introduce new binary
decision variables: δR ∈ R(m+n)×(m+n) for strut connections
and δC ∈ R(m+n)×(m+n) for cable connections. Connectivity
matrices of resulting merged structure will be following:

(a) before merging (b) after merging

Fig. 3: Tensegrity structures, generated using points sampled
from prismatic grids, before and after merging

C = C̄ + δC

R = R̄ + δR
(10)

As an objective function we are minimizing number of ad-
ditional connections. That is a very natural objective, because
if we would like to merge separate structures, we would prefer
to do it with minimal modifications.

Jc =

m+n∑
i=1

m+n∑
j=0

δC +

m+n∑
i=1

m+n∑
j=0

δR (11)

If we wish to add k new nodes, we only need to modify
connectivity matrix and add more rows:

C̄ =

C1 0 0
0 C2 0
0 0 0

 ∈ R(m+n+k)×(m+n+k)

R̄ =

R1 0 0
0 R2 0
0 0 0

 ∈ R(m+n+k)×(m+n+k)

(12)

One of the positive sides of the proposed method is that we
can keep all same constraints as we use in general tensegrity
generation framework.

III. NUMERICAL EXPERIMENTS

Our approach lets us do experiments not only with automat-
ically generated structures, but also with structures, designed
by human experts.

In automatic generation we first generate set of nodes ri for
each structure, which is a subset of some regular grid (cylinder,



(a) before merging

(b) after merging

Fig. 4: Tensegrity structures, generated using points sampled
from prismatic, spherical, cylindrical grids, before and after
merging

cube or sphere). In our experiments each set consists of ten
points. Then we separately apply general optimization-based
generation procedure on each set of nodes and obtain separate
structures. After we shift them some of them in arbitrary
direction in order to get more visually clear results and apply
merging.

For mounted tensegrity structures, such as tensegrity robot
arms, tensegrity bridges and towers, it is important to allow the
structure to have fixed nodes. Fixed nodes can be seen as nodes
with constraints put on them, with reaction forces imposing
those constraints. We keep the number of fixed nodes to three
after merging: such condition will automatically enforce some
new connections to keep equilibrium condition satisfied. In
automatic tensegrity generation we use three fixed nodes.

A. Example 1: sphere and cylinder

In this experiment we took structures, generated from
spherical and cylindrical grids shifted by some distance in
x-axis direction. Merging procedure produced 4 additional
connections: 2 cable and 2 strut.

B. Example 2: two prisms

In this experiment we were investigating the possibility
of merging two prisms into a tensegrity tower. Our method
succeeded with this task and 4 additional cables were enough
for merging.

C. Example 3: prism, sphere and cylinder

Our method is scalable and might be applied to merge
any reasonable amount of structures. In this experiment we
merge three, made of prism, sphere and cylinder grids. Only
3 additional strut connections and 2 cables were needed.

D. Conclusions

In this research we proposed a new method for merging
tensegrity structures, using mixed-integer convex program-
ming, which allows usage of all constraints, used in automatic
tensegrity generation. Method was tested in several numerical
experiments, where we were able to merge different structures
into a single one. In numerical experiments we also show
that method might be applied for simultaneous merging of
a larger number of tensegrity structure, without significant
modifications of their internal connections. The benefit of
proposed algorithm is that it can also be applied for merging
structures, designed by human expert.
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